Subalgebra \(2A^{2}_1\) ↪ \(C^{1}_5\)
26 out of 119
Computations done by the calculator project.

Subalgebra type: \(\displaystyle 2A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) + \(\displaystyle T_{2}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle C^{1}_4\)
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 2A^{2}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 4, 4, 4, 2): 4, \(\displaystyle A^{2}_1\): (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-24}\), \(\displaystyle g_{-16}\)
Positive simple generators: \(\displaystyle g_{24}\), \(\displaystyle g_{16}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 5V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi_{3}}\oplus V_{\omega_{2}+\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus V_{2\omega_{2}+2\psi_{2}}
\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{3}}
\oplus V_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}
\oplus V_{2\omega_{2}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{3}}
\oplus V_{\omega_{2}-\psi_{2}-2\psi_{3}}\oplus V_{-4\psi_{3}}\)
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 23) ; the vectors are over the primal subalgebra.\(g_{-5}\)\(h_{1}\)\(h_{3}\)\(h_{5}\)\(g_{5}\)\(g_{11}\)\(g_{14}\)\(g_{15}\)\(g_{17}\)\(g_{4}\)\(g_{8}\)\(g_{9}\)\(g_{12}\)\(g_{23}\)\(g_{24}\)\(g_{25}\)\(g_{18}\)\(g_{20}\)\(g_{21}\)\(g_{22}\)\(g_{13}\)\(g_{16}\)\(g_{19}\)
weight\(0\)\(0\)\(0\)\(0\)\(0\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{1}\)\(\omega_{2}\)\(\omega_{2}\)\(\omega_{2}\)\(\omega_{2}\)\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(\omega_{1}+\omega_{2}\)\(\omega_{1}+\omega_{2}\)\(\omega_{1}+\omega_{2}\)\(\omega_{1}+\omega_{2}\)\(2\omega_{2}\)\(2\omega_{2}\)\(2\omega_{2}\)
weights rel. to Cartan of (centralizer+semisimple s.a.). \(-4\psi_{3}\)\(0\)\(0\)\(0\)\(4\psi_{3}\)\(\omega_{1}-\psi_{1}-2\psi_{3}\)\(\omega_{1}+\psi_{1}-2\psi_{3}\)\(\omega_{1}-\psi_{1}+2\psi_{3}\)\(\omega_{1}+\psi_{1}+2\psi_{3}\)\(\omega_{2}-\psi_{2}-2\psi_{3}\)\(\omega_{2}+\psi_{2}-2\psi_{3}\)\(\omega_{2}-\psi_{2}+2\psi_{3}\)\(\omega_{2}+\psi_{2}+2\psi_{3}\)\(2\omega_{1}-2\psi_{1}\)\(2\omega_{1}\)\(2\omega_{1}+2\psi_{1}\)\(\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}\)\(\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}\)\(\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}\)\(\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}\)\(2\omega_{2}-2\psi_{2}\)\(2\omega_{2}\)\(2\omega_{2}+2\psi_{2}\)
Isotypic module decomposition over primal subalgebra (total 21 isotypic components).
Isotypical components + highest weight\(\displaystyle V_{-4\psi_{3}} \) → (0, 0, 0, 0, -4)\(\displaystyle V_{0} \) → (0, 0, 0, 0, 0)\(\displaystyle V_{4\psi_{3}} \) → (0, 0, 0, 0, 4)\(\displaystyle V_{\omega_{1}-\psi_{1}-2\psi_{3}} \) → (1, 0, -1, 0, -2)\(\displaystyle V_{\omega_{1}+\psi_{1}-2\psi_{3}} \) → (1, 0, 1, 0, -2)\(\displaystyle V_{\omega_{1}-\psi_{1}+2\psi_{3}} \) → (1, 0, -1, 0, 2)\(\displaystyle V_{\omega_{1}+\psi_{1}+2\psi_{3}} \) → (1, 0, 1, 0, 2)\(\displaystyle V_{\omega_{2}-\psi_{2}-2\psi_{3}} \) → (0, 1, 0, -1, -2)\(\displaystyle V_{\omega_{2}+\psi_{2}-2\psi_{3}} \) → (0, 1, 0, 1, -2)\(\displaystyle V_{\omega_{2}-\psi_{2}+2\psi_{3}} \) → (0, 1, 0, -1, 2)\(\displaystyle V_{\omega_{2}+\psi_{2}+2\psi_{3}} \) → (0, 1, 0, 1, 2)\(\displaystyle V_{2\omega_{1}-2\psi_{1}} \) → (2, 0, -2, 0, 0)\(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0, 0)\(\displaystyle V_{2\omega_{1}+2\psi_{1}} \) → (2, 0, 2, 0, 0)\(\displaystyle V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}} \) → (1, 1, -1, -1, 0)\(\displaystyle V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}} \) → (1, 1, 1, -1, 0)\(\displaystyle V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}} \) → (1, 1, -1, 1, 0)\(\displaystyle V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}} \) → (1, 1, 1, 1, 0)\(\displaystyle V_{2\omega_{2}-2\psi_{2}} \) → (0, 2, 0, -2, 0)\(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0, 0)\(\displaystyle V_{2\omega_{2}+2\psi_{2}} \) → (0, 2, 0, 2, 0)
Module label \(W_{1}\)\(W_{2}\)\(W_{3}\)\(W_{4}\)\(W_{5}\)\(W_{6}\)\(W_{7}\)\(W_{8}\)\(W_{9}\)\(W_{10}\)\(W_{11}\)\(W_{12}\)\(W_{13}\)\(W_{14}\)\(W_{15}\)\(W_{16}\)\(W_{17}\)\(W_{18}\)\(W_{19}\)\(W_{20}\)\(W_{21}\)
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
\(g_{-5}\)
Cartan of centralizer component.
\(h_{1}\)
\(h_{3}\)
\(h_{5}\)
\(g_{5}\)
\(g_{11}\)
\(g_{-17}\)
\(g_{14}\)
\(g_{-15}\)
\(g_{15}\)
\(-g_{-14}\)
\(g_{17}\)
\(-g_{-11}\)
\(g_{4}\)
\(g_{-12}\)
\(g_{8}\)
\(g_{-9}\)
\(g_{9}\)
\(-g_{-8}\)
\(g_{12}\)
\(-g_{-4}\)
\(g_{23}\)
\(-g_{-1}\)
\(-2g_{-25}\)
Semisimple subalgebra component.
\(-g_{24}\)
\(2h_{5}+4h_{4}+4h_{3}+4h_{2}+2h_{1}\)
\(2g_{-24}\)
\(g_{25}\)
\(-g_{1}\)
\(-2g_{-23}\)
\(g_{18}\)
\(-g_{-10}\)
\(-g_{2}\)
\(-g_{-22}\)
\(g_{20}\)
\(-g_{-7}\)
\(-g_{6}\)
\(-g_{-21}\)
\(g_{21}\)
\(-g_{-6}\)
\(-g_{7}\)
\(-g_{-20}\)
\(g_{22}\)
\(-g_{-2}\)
\(-g_{10}\)
\(-g_{-18}\)
\(g_{13}\)
\(-g_{-3}\)
\(-2g_{-19}\)
Semisimple subalgebra component.
\(-g_{16}\)
\(2h_{5}+4h_{4}+2h_{3}\)
\(2g_{-16}\)
\(g_{19}\)
\(-g_{3}\)
\(-2g_{-13}\)
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above\(0\)\(0\)\(0\)\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{1}\)
\(-\omega_{1}\)
\(\omega_{2}\)
\(-\omega_{2}\)
\(\omega_{2}\)
\(-\omega_{2}\)
\(\omega_{2}\)
\(-\omega_{2}\)
\(\omega_{2}\)
\(-\omega_{2}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(\omega_{1}+\omega_{2}\)
\(-\omega_{1}+\omega_{2}\)
\(\omega_{1}-\omega_{2}\)
\(-\omega_{1}-\omega_{2}\)
\(\omega_{1}+\omega_{2}\)
\(-\omega_{1}+\omega_{2}\)
\(\omega_{1}-\omega_{2}\)
\(-\omega_{1}-\omega_{2}\)
\(\omega_{1}+\omega_{2}\)
\(-\omega_{1}+\omega_{2}\)
\(\omega_{1}-\omega_{2}\)
\(-\omega_{1}-\omega_{2}\)
\(\omega_{1}+\omega_{2}\)
\(-\omega_{1}+\omega_{2}\)
\(\omega_{1}-\omega_{2}\)
\(-\omega_{1}-\omega_{2}\)
\(2\omega_{2}\)
\(0\)
\(-2\omega_{2}\)
\(2\omega_{2}\)
\(0\)
\(-2\omega_{2}\)
\(2\omega_{2}\)
\(0\)
\(-2\omega_{2}\)
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer\(-4\psi_{3}\)\(0\)\(4\psi_{3}\)\(\omega_{1}-\psi_{1}-2\psi_{3}\)
\(-\omega_{1}-\psi_{1}-2\psi_{3}\)
\(\omega_{1}+\psi_{1}-2\psi_{3}\)
\(-\omega_{1}+\psi_{1}-2\psi_{3}\)
\(\omega_{1}-\psi_{1}+2\psi_{3}\)
\(-\omega_{1}-\psi_{1}+2\psi_{3}\)
\(\omega_{1}+\psi_{1}+2\psi_{3}\)
\(-\omega_{1}+\psi_{1}+2\psi_{3}\)
\(\omega_{2}-\psi_{2}-2\psi_{3}\)
\(-\omega_{2}-\psi_{2}-2\psi_{3}\)
\(\omega_{2}+\psi_{2}-2\psi_{3}\)
\(-\omega_{2}+\psi_{2}-2\psi_{3}\)
\(\omega_{2}-\psi_{2}+2\psi_{3}\)
\(-\omega_{2}-\psi_{2}+2\psi_{3}\)
\(\omega_{2}+\psi_{2}+2\psi_{3}\)
\(-\omega_{2}+\psi_{2}+2\psi_{3}\)
\(2\omega_{1}-2\psi_{1}\)
\(-2\psi_{1}\)
\(-2\omega_{1}-2\psi_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}+2\psi_{1}\)
\(2\psi_{1}\)
\(-2\omega_{1}+2\psi_{1}\)
\(\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}\)
\(-\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}\)
\(\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}\)
\(-\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}\)
\(\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}\)
\(-\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}\)
\(\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}\)
\(-\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}\)
\(\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}\)
\(-\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}\)
\(\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}\)
\(-\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}\)
\(\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}\)
\(-\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}\)
\(\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}\)
\(-\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}\)
\(2\omega_{2}-2\psi_{2}\)
\(-2\psi_{2}\)
\(-2\omega_{2}-2\psi_{2}\)
\(2\omega_{2}\)
\(0\)
\(-2\omega_{2}\)
\(2\omega_{2}+2\psi_{2}\)
\(2\psi_{2}\)
\(-2\omega_{2}+2\psi_{2}\)
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.\(\displaystyle M_{-4\psi_{3}}\)\(\displaystyle M_{0}\)\(\displaystyle M_{4\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{2}-\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}-\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}+\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}-\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{\omega_{2}+\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}+\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\)\(\displaystyle M_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}}\)
\(\displaystyle M_{2\omega_{2}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{2}-2\psi_{2}}\)\(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\)\(\displaystyle M_{2\omega_{2}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{2}+2\psi_{2}}\)
Isotypic character\(\displaystyle M_{-4\psi_{3}}\)\(\displaystyle 3M_{0}\)\(\displaystyle M_{4\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}-2\psi_{3}}\)\(\displaystyle M_{\omega_{1}-\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}-\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{3}}\)\(\displaystyle M_{\omega_{2}-\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}-\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus M_{-\omega_{2}+\psi_{2}-2\psi_{3}}\)\(\displaystyle M_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}-\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{\omega_{2}+\psi_{2}+2\psi_{3}}\oplus M_{-\omega_{2}+\psi_{2}+2\psi_{3}}\)\(\displaystyle M_{2\omega_{1}-2\psi_{1}}\oplus M_{-2\psi_{1}}\oplus M_{-2\omega_{1}-2\psi_{1}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}+2\psi_{1}}\oplus M_{2\psi_{1}}\oplus M_{-2\omega_{1}+2\psi_{1}}\)\(\displaystyle M_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}-\psi_{1}-\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}+\psi_{1}-\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}-\psi_{1}+\psi_{2}}\)
\(\displaystyle M_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}}
\oplus M_{-\omega_{1}-\omega_{2}+\psi_{1}+\psi_{2}}\)
\(\displaystyle M_{2\omega_{2}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{2}-2\psi_{2}}\)\(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\)\(\displaystyle M_{2\omega_{2}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{2}+2\psi_{2}}\)

Semisimple subalgebra: W_{13}+W_{20}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported



Made total 147792114 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
2*2 (unknown) gens:
(
g_{-24}, g_{24},
x_{4} g_{-13}+x_{5} g_{-16}+x_{6} g_{-19}, x_{12} g_{19}+x_{11} g_{16}+x_{10} g_{13})

Unknown splitting cartan of centralizer.
x_{17} h_{5}+x_{16} h_{4}+x_{15} h_{3}+x_{14} h_{2}+x_{13} h_{1}, x_{22} h_{5}+x_{21} h_{4}+x_{20} h_{3}+x_{19} h_{2}+x_{18} h_{1}, x_{27} h_{5}+x_{26} h_{4}+x_{25} h_{3}+x_{24} h_{2}+x_{23} h_{1}
h: (2, 4, 4, 4, 2), e = combination of g_{23} g_{24} g_{25} , f= combination of g_{-23} g_{-24} g_{-25} h: (0, 0, 2, 4, 2), e = combination of g_{13} g_{16} g_{19} , f= combination of g_{-13} g_{-16} g_{-19} Positive weight subsystem: 2 vectors: (1, 0), (0, 1)
Symmetric Cartan default scale: \begin{pmatrix}
2 & 0\\
0 & 2\\
\end{pmatrix}Character ambient Lie algebra: 3V_{2\omega_{2}}+4V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+4V_{\omega_{2}}+4V_{\omega_{1}}+4V_{-\omega_{1}+\omega_{2}}+11V_{0}+4V_{\omega_{1}-\omega_{2}}+4V_{-\omega_{1}}+4V_{-\omega_{2}}+3V_{-2\omega_{1}}+4V_{-\omega_{1}-\omega_{2}}+3V_{-2\omega_{2}}
A necessary system to realize the candidate subalgebra.
1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28}
-x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28}
+x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28}
-2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28}
-2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28}
-2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28}
+x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28}
-3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28}
-2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28}
+3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28}
-x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28}
+x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28}
+x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28}
-2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28}
+2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28}
-x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28}
+1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28}
+2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28}
+2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28}
+x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28}
-3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28}
-x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28}
-3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28}
+3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28}
-1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28}
+4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28}
-2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28}
-1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28}
+2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
-2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
+3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28}
+4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28}
-3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28}
+x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28}
-3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28}
+1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28}
+3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28}
-x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28}
-x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28}
-3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28}
+3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28}
-3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28}
-x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28}
+4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28}
-x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28}
+3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28}
-4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28}
+x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28}
+x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28}
-1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28}
-3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28}
+3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28}
+x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28}
+1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28}
-x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28}
-2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28}
-2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28}
+1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28}
-3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28}
+1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28}
+3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28}
+1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28}
-x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28}
+1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28}
+x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28}
-x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28}
+2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28}
+3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28}
+1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28}
+4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28}
-1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28}
-3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28}
-1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28}
+3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
-3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28}
-1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28}
-3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28}
+1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28}
-1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28}
+1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28}
-1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28}
+1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28}
-2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28}
+2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28}
-x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28}
-x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28}
+3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28}
-3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28}
+x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28}
-1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28}
+3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28}
+3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28}
+3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28}
+2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28}
+3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
-3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28}
+1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28}
+1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28}
-x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28}
-3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28}
-1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28}
+x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28}
-3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28}
-3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28}
+1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28}
-2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28}
+2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28}
-1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
-3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28}
-1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28}
+3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28}
+1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28}
+3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28}
-x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28}
-2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28}
+2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28}
-3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28}
-4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28}
+1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28}
-3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28}
+1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28}
-x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28}
-1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28}
+3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28}
+1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28}
+1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28}
-2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28}
+1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28}
+2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28}
-1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28}
+x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28}
-3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28}
-2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28}
+1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28}
+x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28}
+3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28}
+x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28}
-1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28}
+1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28}
+3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
-1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
+1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28}
-3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28}
-x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28}
-1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28}
+1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28}
-3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28}
+1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28}
-x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28}
-4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28}
+1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28}
-2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28}
+4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28}
-1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28}
-3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28}
+1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28}
-x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28}
+3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28}
+3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28}
-4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28}
+x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28}
+3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28}
-2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28}
-x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28}
+2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28}
-3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28}
+3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28}
-3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28}
+x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28}
+x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28}
-x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28}
-3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28}
+1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28}
+3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28}
-x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28}
+1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28}
+3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28}
-3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28}
+2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28}
+3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
+4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
+1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
-x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28}
+1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28}
+x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28}
-x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28}
+1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28}
+2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28}
-x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28}
-1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28}
+1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28}
-x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28}
-2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28}
+1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28}
+x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28}
-1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28}
+x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28}
-3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28}
-x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28}
+2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28}
-2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28}
+2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28}
-x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28}
+2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28}
+3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28}
-2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28}
+1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28}
+3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28}
-1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28}
+1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28}
+3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28}
-1= 0
x_{14} = 0
x_{19} = 0
x_{24} = 0
x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2= 0
x_{6} x_{11} +x_{5} x_{10} = 0
x_{5} x_{12} +x_{4} x_{11} = 0
x_{6} x_{12} +x_{5} x_{11} -1= 0
x_{4} x_{16} -x_{4} x_{15} = 0
x_{5} x_{16} -x_{5} x_{14} = 0
x_{6} x_{15} -x_{6} x_{14} = 0
x_{10} x_{16} -x_{10} x_{15} = 0
x_{11} x_{16} -x_{11} x_{14} = 0
x_{12} x_{15} -x_{12} x_{14} = 0
x_{4} x_{21} -x_{4} x_{20} = 0
x_{5} x_{21} -x_{5} x_{19} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{10} x_{21} -x_{10} x_{20} = 0
x_{11} x_{21} -x_{11} x_{19} = 0
x_{12} x_{20} -x_{12} x_{19} = 0
x_{4} x_{26} -x_{4} x_{25} = 0
x_{5} x_{26} -x_{5} x_{24} = 0
x_{6} x_{25} -x_{6} x_{24} = 0
x_{10} x_{26} -x_{10} x_{25} = 0
x_{11} x_{26} -x_{11} x_{24} = 0
x_{12} x_{25} -x_{12} x_{24} = 0
The above system after transformation.
1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28}
-x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28}
+x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28}
-2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28}
-2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28}
-2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28}
+x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28}
-3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28}
-2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28}
+3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28}
-x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28}
+x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28}
+x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28}
-2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28}
+2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28}
-x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28}
+1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28}
+2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28}
+2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28}
+x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28}
-3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28}
-x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28}
-3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28}
+3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28}
-1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28}
+4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28}
-2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28}
-1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28}
+2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
-2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
+3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28}
+4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28}
-3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28}
+x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28}
-3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28}
+1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28}
+3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28}
-x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28}
-x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28}
-3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28}
+3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28}
-3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28}
-x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28}
+4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28}
-x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28}
+3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28}
-4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28}
+x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28}
+x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28}
-1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28}
-3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28}
+3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28}
+x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28}
+1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28}
-x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28}
-2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28}
-2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28}
+1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28}
-3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28}
+1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28}
+3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28}
+1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28}
-x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28}
+1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28}
+x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28}
-x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28}
+2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28}
+3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28}
+1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28}
+4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28}
-1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28}
-3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28}
-1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28}
+3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
-3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28}
-1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28}
-3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28}
+1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28}
-1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28}
+1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28}
-1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28}
+1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28}
-2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28}
+2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28}
-x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28}
-x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28}
+3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28}
-3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28}
+x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28}
-1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28}
+3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28}
+3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28}
+3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28}
+2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28}
+3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
-3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28}
+1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28}
+1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28}
-x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28}
-3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28}
-1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28}
+x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28}
-3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28}
-3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28}
+1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28}
-2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28}
+2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28}
-1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
-3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28}
-1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28}
+3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28}
+1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28}
+3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28}
-x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28}
-2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28}
+2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28}
-3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28}
-4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28}
+1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28}
-3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28}
+1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28}
-x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28}
-1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28}
+3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28}
+1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28}
+1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28}
-2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28}
+1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28}
+2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28}
-1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28}
+x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28}
-3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28}
-2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28}
+1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28}
+x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28}
+3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28}
+x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28}
-1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28}
+1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28}
+3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
-1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
+1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28}
-3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28}
-x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28}
-1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28}
+1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28}
-3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28}
+1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28}
-x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28}
-4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28}
+1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28}
-2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28}
+4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28}
-1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28}
-3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28}
+1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28}
-x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28}
+3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28}
+3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28}
-4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28}
+x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28}
+3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28}
-2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28}
-x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28}
+2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28}
-3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28}
+3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28}
-3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28}
+x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28}
+x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28}
-x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28}
-3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28}
+1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28}
+3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28}
-x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28}
+1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28}
+3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28}
-3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28}
+2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28}
+3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
+4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
+1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
-x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28}
+1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28}
+x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28}
-x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28}
+1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28}
+2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28}
-x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28}
-1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28}
+1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28}
-x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28}
-2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28}
+1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28}
+x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28}
-1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28}
+x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28}
-3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28}
-x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28}
+2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28}
-2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28}
+2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28}
-x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28}
+2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28}
+3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28}
-2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28}
+1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28}
+3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28}
-1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28}
+1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28}
+3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28}
-1= 0
x_{14} = 0
x_{19} = 0
x_{24} = 0
x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2= 0
x_{6} x_{11} +x_{5} x_{10} = 0
x_{5} x_{12} +x_{4} x_{11} = 0
x_{6} x_{12} +x_{5} x_{11} -1= 0
x_{4} x_{16} -x_{4} x_{15} = 0
x_{5} x_{16} -x_{5} x_{14} = 0
x_{6} x_{15} -x_{6} x_{14} = 0
x_{10} x_{16} -x_{10} x_{15} = 0
x_{11} x_{16} -x_{11} x_{14} = 0
x_{12} x_{15} -x_{12} x_{14} = 0
x_{4} x_{21} -x_{4} x_{20} = 0
x_{5} x_{21} -x_{5} x_{19} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{10} x_{21} -x_{10} x_{20} = 0
x_{11} x_{21} -x_{11} x_{19} = 0
x_{12} x_{20} -x_{12} x_{19} = 0
x_{4} x_{26} -x_{4} x_{25} = 0
x_{5} x_{26} -x_{5} x_{24} = 0
x_{6} x_{25} -x_{6} x_{24} = 0
x_{10} x_{26} -x_{10} x_{25} = 0
x_{11} x_{26} -x_{11} x_{24} = 0
x_{12} x_{25} -x_{12} x_{24} = 0
For the calculator:
(DynkinType =2A^{2}_1; ElementsCartan =((2, 4, 4, 4, 2), (0, 0, 2, 4, 2)); generators =(g_{-24}, g_{24}, x_{4} g_{-13}+x_{5} g_{-16}+x_{6} g_{-19}, x_{12} g_{19}+x_{11} g_{16}+x_{10} g_{13}) );
FindOneSolutionSerreLikePolynomialSystem{}( 1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28} +2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28} -2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28} -2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28} +x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28} -2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28} +2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} +3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28} -3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28} +3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} -1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28} -x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} +3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} +2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} +3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} +x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} +4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28} -x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} -3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} +2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} -x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} -3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} +3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28} -4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28} -x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} -3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} +2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} +3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} +1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28} -3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28} -x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28} +x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} +x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28} +3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} -3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28} -3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} -3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} -1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28} -x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28} -x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28} +3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28} +x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} +x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28} -x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} -3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28} +2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28} -2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28} +3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28} +3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28} +1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28} -2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28} +3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28} -3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28} -1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28} +1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28} -2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28} +2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28} -2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28} +2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} +3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} +x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} +x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28} +3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28} -2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28} +x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} +4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28} +x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28} +3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28} +3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} -1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28} -4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} +3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} -3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28} -x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28} +3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28} -1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28} -3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28} +3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28} -x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28} +2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28} +2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28} +1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28} -2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28} +x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} +x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28} +x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} +x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28} -3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28} -x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28} +2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28} -2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} -x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28} -1, x_{14} , x_{19} , x_{24} , x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2, x_{6} x_{11} +x_{5} x_{10} , x_{5} x_{12} +x_{4} x_{11} , x_{6} x_{12} +x_{5} x_{11} -1, x_{4} x_{16} -x_{4} x_{15} , x_{5} x_{16} -x_{5} x_{14} , x_{6} x_{15} -x_{6} x_{14} , x_{10} x_{16} -x_{10} x_{15} , x_{11} x_{16} -x_{11} x_{14} , x_{12} x_{15} -x_{12} x_{14} , x_{4} x_{21} -x_{4} x_{20} , x_{5} x_{21} -x_{5} x_{19} , x_{6} x_{20} -x_{6} x_{19} , x_{10} x_{21} -x_{10} x_{20} , x_{11} x_{21} -x_{11} x_{19} , x_{12} x_{20} -x_{12} x_{19} , x_{4} x_{26} -x_{4} x_{25} , x_{5} x_{26} -x_{5} x_{24} , x_{6} x_{25} -x_{6} x_{24} , x_{10} x_{26} -x_{10} x_{25} , x_{11} x_{26} -x_{11} x_{24} , x_{12} x_{25} -x_{12} x_{24} )